3.3.16 \(\int \coth ^3(x) \sqrt {a+b \tanh ^2(x)} \, dx\) [216]

3.3.16.1 Optimal result
3.3.16.2 Mathematica [A] (verified)
3.3.16.3 Rubi [A] (warning: unable to verify)
3.3.16.4 Maple [F]
3.3.16.5 Fricas [B] (verification not implemented)
3.3.16.6 Sympy [F]
3.3.16.7 Maxima [F]
3.3.16.8 Giac [B] (verification not implemented)
3.3.16.9 Mupad [F(-1)]

3.3.16.1 Optimal result

Integrand size = 17, antiderivative size = 83 \[ \int \coth ^3(x) \sqrt {a+b \tanh ^2(x)} \, dx=-\frac {(2 a+b) \text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a}}\right )}{2 \sqrt {a}}+\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-\frac {1}{2} \coth ^2(x) \sqrt {a+b \tanh ^2(x)} \]

output
-1/2*(2*a+b)*arctanh((a+b*tanh(x)^2)^(1/2)/a^(1/2))/a^(1/2)+arctanh((a+b*t 
anh(x)^2)^(1/2)/(a+b)^(1/2))*(a+b)^(1/2)-1/2*coth(x)^2*(a+b*tanh(x)^2)^(1/ 
2)
 
3.3.16.2 Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.00 \[ \int \coth ^3(x) \sqrt {a+b \tanh ^2(x)} \, dx=-\frac {(2 a+b) \text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a}}\right )}{2 \sqrt {a}}+\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-\frac {1}{2} \coth ^2(x) \sqrt {a+b \tanh ^2(x)} \]

input
Integrate[Coth[x]^3*Sqrt[a + b*Tanh[x]^2],x]
 
output
-1/2*((2*a + b)*ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a]])/Sqrt[a] + Sqrt[a + 
 b]*ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]] - (Coth[x]^2*Sqrt[a + b*Tan 
h[x]^2])/2
 
3.3.16.3 Rubi [A] (warning: unable to verify)

Time = 0.32 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.05, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.588, Rules used = {3042, 26, 4153, 26, 354, 110, 27, 174, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \coth ^3(x) \sqrt {a+b \tanh ^2(x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {i \sqrt {a-b \tan (i x)^2}}{\tan (i x)^3}dx\)

\(\Big \downarrow \) 26

\(\displaystyle -i \int \frac {\sqrt {a-b \tan (i x)^2}}{\tan (i x)^3}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle -i \int \frac {i \coth ^3(x) \sqrt {b \tanh ^2(x)+a}}{1-\tanh ^2(x)}d\tanh (x)\)

\(\Big \downarrow \) 26

\(\displaystyle \int \frac {\coth ^3(x) \sqrt {a+b \tanh ^2(x)}}{1-\tanh ^2(x)}d\tanh (x)\)

\(\Big \downarrow \) 354

\(\displaystyle \frac {1}{2} \int \frac {\coth ^2(x) \sqrt {b \tanh ^2(x)+a}}{1-\tanh ^2(x)}d\tanh ^2(x)\)

\(\Big \downarrow \) 110

\(\displaystyle \frac {1}{2} \left (\int \frac {\coth (x) \left (b \tanh ^2(x)+2 a+b\right )}{2 \left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh ^2(x)-\coth (x) \sqrt {a+b \tanh ^2(x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \int \frac {\coth (x) \left (b \tanh ^2(x)+2 a+b\right )}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh ^2(x)-\coth (x) \sqrt {a+b \tanh ^2(x)}\right )\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (2 (a+b) \int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh ^2(x)+(2 a+b) \int \frac {\coth (x)}{\sqrt {b \tanh ^2(x)+a}}d\tanh ^2(x)\right )-\coth (x) \sqrt {a+b \tanh ^2(x)}\right )\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (\frac {4 (a+b) \int \frac {1}{\frac {a+b}{b}-\frac {\tanh ^4(x)}{b}}d\sqrt {b \tanh ^2(x)+a}}{b}+\frac {2 (2 a+b) \int \frac {1}{\frac {\tanh ^4(x)}{b}-\frac {a}{b}}d\sqrt {b \tanh ^2(x)+a}}{b}\right )-\coth (x) \sqrt {a+b \tanh ^2(x)}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {1}{2} \left (\frac {1}{2} \left (4 \sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )-\frac {2 (2 a+b) \text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a}}\right )}{\sqrt {a}}\right )-\coth (x) \sqrt {a+b \tanh ^2(x)}\right )\)

input
Int[Coth[x]^3*Sqrt[a + b*Tanh[x]^2],x]
 
output
(((-2*(2*a + b)*ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a]])/Sqrt[a] + 4*Sqrt[a 
 + b]*ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]])/2 - Coth[x]*Sqrt[a + b*T 
anh[x]^2])/2
 

3.3.16.3.1 Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 110
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 
1)*(b*e - a*f))), x] - Simp[1/((m + 1)*(b*e - a*f))   Int[(a + b*x)^(m + 1) 
*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + 
p + 2)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && Gt 
Q[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, 
 m + n])
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.3.16.4 Maple [F]

\[\int \coth \left (x \right )^{3} \sqrt {a +b \tanh \left (x \right )^{2}}d x\]

input
int(coth(x)^3*(a+b*tanh(x)^2)^(1/2),x)
 
output
int(coth(x)^3*(a+b*tanh(x)^2)^(1/2),x)
 
3.3.16.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 907 vs. \(2 (65) = 130\).

Time = 0.41 (sec) , antiderivative size = 4891, normalized size of antiderivative = 58.93 \[ \int \coth ^3(x) \sqrt {a+b \tanh ^2(x)} \, dx=\text {Too large to display} \]

input
integrate(coth(x)^3*(a+b*tanh(x)^2)^(1/2),x, algorithm="fricas")
 
output
[1/4*((a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 - 2*a*cosh(x)^2 + 
 2*(3*a*cosh(x)^2 - a)*sinh(x)^2 + 4*(a*cosh(x)^3 - a*cosh(x))*sinh(x) + a 
)*sqrt(a + b)*log(((a^3 + a^2*b)*cosh(x)^8 + 8*(a^3 + a^2*b)*cosh(x)*sinh( 
x)^7 + (a^3 + a^2*b)*sinh(x)^8 + 2*(2*a^3 + a^2*b)*cosh(x)^6 + 2*(2*a^3 + 
a^2*b + 14*(a^3 + a^2*b)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^3 + a^2*b)*cosh(x 
)^3 + 3*(2*a^3 + a^2*b)*cosh(x))*sinh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^ 
3)*cosh(x)^4 + (70*(a^3 + a^2*b)*cosh(x)^4 + 6*a^3 + 4*a^2*b - a*b^2 + b^3 
 + 30*(2*a^3 + a^2*b)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + a^2*b)*cosh(x)^5 
 + 10*(2*a^3 + a^2*b)*cosh(x)^3 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)) 
*sinh(x)^3 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 + 2*(2*a^3 + 3*a^2*b - b^3)*cos 
h(x)^2 + 2*(14*(a^3 + a^2*b)*cosh(x)^6 + 15*(2*a^3 + a^2*b)*cosh(x)^4 + 2* 
a^3 + 3*a^2*b - b^3 + 3*(6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^2)*sinh(x) 
^2 + sqrt(2)*(a^2*cosh(x)^6 + 6*a^2*cosh(x)*sinh(x)^5 + a^2*sinh(x)^6 + 3* 
a^2*cosh(x)^4 + 3*(5*a^2*cosh(x)^2 + a^2)*sinh(x)^4 + 4*(5*a^2*cosh(x)^3 + 
 3*a^2*cosh(x))*sinh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x)^2 + (15*a^2*cosh 
(x)^4 + 18*a^2*cosh(x)^2 + 3*a^2 + 2*a*b - b^2)*sinh(x)^2 + a^2 + 2*a*b + 
b^2 + 2*(3*a^2*cosh(x)^5 + 6*a^2*cosh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x) 
)*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b 
)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a^3 + a^2*b)*cosh(x 
)^7 + 3*(2*a^3 + a^2*b)*cosh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cos...
 
3.3.16.6 Sympy [F]

\[ \int \coth ^3(x) \sqrt {a+b \tanh ^2(x)} \, dx=\int \sqrt {a + b \tanh ^{2}{\left (x \right )}} \coth ^{3}{\left (x \right )}\, dx \]

input
integrate(coth(x)**3*(a+b*tanh(x)**2)**(1/2),x)
 
output
Integral(sqrt(a + b*tanh(x)**2)*coth(x)**3, x)
 
3.3.16.7 Maxima [F]

\[ \int \coth ^3(x) \sqrt {a+b \tanh ^2(x)} \, dx=\int { \sqrt {b \tanh \left (x\right )^{2} + a} \coth \left (x\right )^{3} \,d x } \]

input
integrate(coth(x)^3*(a+b*tanh(x)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*tanh(x)^2 + a)*coth(x)^3, x)
 
3.3.16.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 557 vs. \(2 (65) = 130\).

Time = 0.72 (sec) , antiderivative size = 557, normalized size of antiderivative = 6.71 \[ \int \coth ^3(x) \sqrt {a+b \tanh ^2(x)} \, dx=\frac {{\left (2 \, a + b\right )} \arctan \left (-\frac {\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a}} - \frac {1}{2} \, \sqrt {a + b} \log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right ) + \frac {1}{2} \, \sqrt {a + b} \log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right ) - \frac {1}{2} \, \sqrt {a + b} \log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right ) + \frac {2 \, {\left ({\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{3} {\left (2 \, a + b\right )} + {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} {\left (2 \, a - 3 \, b\right )} \sqrt {a + b} - {\left (2 \, a^{2} + 3 \, a b - 3 \, b^{2}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} - {\left (2 \, a^{2} - a b + b^{2}\right )} \sqrt {a + b}\right )}}{{\left ({\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} - 2 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} \sqrt {a + b} - 3 \, a + b\right )}^{2}} \]

input
integrate(coth(x)^3*(a+b*tanh(x)^2)^(1/2),x, algorithm="giac")
 
output
(2*a + b)*arctan(-1/2*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 
2*a*e^(2*x) - 2*b*e^(2*x) + a + b) - sqrt(a + b))/sqrt(-a))/sqrt(-a) - 1/2 
*sqrt(a + b)*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 
2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*(a + b) - sqrt(a + b)*(a - b))) + 1/2* 
sqrt(a + b)*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2* 
a*e^(2*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b))) - 1/2*sqrt(a + b)*log(abs 
(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^( 
2*x) + a + b) - sqrt(a + b))) + 2*((sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + 
 b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^3*(2*a + b) + (sqrt(a + b 
)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b 
))^2*(2*a - 3*b)*sqrt(a + b) - (2*a^2 + 3*a*b - 3*b^2)*(sqrt(a + b)*e^(2*x 
) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b)) - (2* 
a^2 - a*b + b^2)*sqrt(a + b))/((sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e 
^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^2 - 2*(sqrt(a + b)*e^(2*x) - 
sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*sqrt(a + 
b) - 3*a + b)^2
 
3.3.16.9 Mupad [F(-1)]

Timed out. \[ \int \coth ^3(x) \sqrt {a+b \tanh ^2(x)} \, dx=\int {\mathrm {coth}\left (x\right )}^3\,\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a} \,d x \]

input
int(coth(x)^3*(a + b*tanh(x)^2)^(1/2),x)
 
output
int(coth(x)^3*(a + b*tanh(x)^2)^(1/2), x)